organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(±)-*N*-(3-Hydroxy-1,2-diphenylpropyl)-4-methylbenzenesulfonamide

Sok Teng Tong, David Barker,* Ka Wai Choi, Peter D. W. Boyd and Margaret A. Brimble

Department of Chemistry, University of Auckland, Private Bag 92019, Auckland, New Zealand

Correspondence e-mail: d.barker@auckland.ac.nz

Received 29 July 2008; accepted 10 September 2008

Key indicators: single-crystal X-ray study; T = 90 K; mean σ (C–C) = 0.004 Å; R factor = 0.066; wR factor = 0.193; data-to-parameter ratio = 18.3.

In the title compound, $C_{22}H_{23}NO_3S$, the relative stereochemistry of the two stereogenic centres is *anti* with respect to the H atoms. The molecular packing of the crystal shows a doublestrand arrangement, consisting of one strand of (S^*,S^*) enantiomers and one strand of (R^*,R^*) enantiomers. Both strands lie parallel to each other along the *a* axis. Each strand is made up of dimers in which the molecules are connected to each other *via* an intermolecular $O-H\cdots O$ hydrogen bond between the hydroxyl groups and an $O-H\cdots\pi$ interaction with the aromatic ring. These units are then connected to neighbouring dimers *via* $N-H\cdots O$ hydrogen bonds and C- $H\cdots O$ interactions. Intramolecular $C-H\cdots O$ interactions are also observed.

Related literature

For a similar organocatalytic α -oxdiation of ketones, see: Engqvist *et al.* (2005). For a related structure, see: Chinnakali *et al.* (2007).

Experimental

Crystal data

c = 17.4287 (7) Å $\beta = 91.028 (2)^{\circ}$ $V = 3732.7 (3) \text{ Å}^{3}$ Z = 8Mo $K\alpha$ radiation $\mu = 0.20 \text{ mm}^{-1}$ T = 90 (2) K

Data collection

Bruker SMART diffractometer with
APEXII CCD detector4478 independent reflectionsAbsorption correction: none
22582 measured reflections $R_{int} = 0.042$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.066$ 15 restraints $wR(F^2) = 0.193$ H-atom parameters constrainedS = 1.13 $\Delta \rho_{max} = 1.06 \text{ e } \text{\AA}^{-3}$ 4478 reflections $\Delta \rho_{min} = -0.64 \text{ e } \text{\AA}^{-3}$ 245 parameters245 parameters

 $0.4 \times 0.16 \times 0.14~\text{mm}$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1-H1···O1 ⁱ	0.86	2.45	3.122 (3)	136
$O3-H3A\cdots O3^{ii}$	0.85	2.06	2.910 (5)	180
C4-H4···O1	0.93	2.55	2.909 (4)	104
C8−H8···O1	0.98	2.61	2.958 (3)	101
$C1 - H1A \cdots O2^{iii}$	0.96	2.63	3.557 (4)	161
$C1 - H1B \cdots O2^{iv}$	0.96	2.74	3.552 (4)	142
$O3-H3B\cdots C16^{ii}$	0.86	2.67	3.489 (4)	160.1
$O3-H3B\cdots C17^{ii}$	0.86	2.85	3.499 (4)	133.7

Symmetry codes: (i) x, y + 1, z; (ii) $-x, y, -z + \frac{1}{2}$; (iii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (iv) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *SMART* (Siemens, 1995); cell refinement: *SAINT* (Siemens, 1995); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *publCIF* (Westrip, 2008).

The authors thank Tania Groutso for the data collection. The awards of an International Doctoral Scholarship from the University of Auckland and a New Zealand International Doctoral Research Scholarship from Education New Zealand (to STT) are greatly appreciated.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2094).

References

Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Chinnakali, K., Poornachandran, M., Raghunathan, R. & Fun, H.-K. (2007). Acta Cryst. E63, 01030–01031.

Engqvist, M., Casas, J., Sunden, H., Ibrahem, I. & Cordova, A. (2005). *Tetrahedron Lett.* **46**, 2053–2057.

- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). *J. Appl. Cryst.* 39, 453–457.
 Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.
- Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Westrip, S. P. (2008). publCIF. In preparation.

Acta Cryst. (2008). E64, o1990 [doi:10.1107/S1600536808028948]

(±)-N-(3-Hydroxy-1,2-diphenylpropyl)-4-methylbenzenesulfonamide

S. T. Tong, D. Barker, K. W. Choi, P. D. W. Boyd and M. A. Brimble

Comment

The title racemic sulfonamide was obtained unintentionally as a product from the study of the organocatalytic α -oxidation of phenylacetaldehyde catalysed by (*S*)-proline. The relative stereochemistry of the two stereogenic centres was established by X-ray crystallography as *anti* with respect to the H atoms of C8 and C15 (Fig. 1).

The molecular packing of the crystal shows a double strand arrangement, which consists of one strand of $(8S^*, 15S^*)$ enantiomers and one strand of $(8R^*, 15R^*)$ enantiomers. Both strands lie parallel to each other along the *a* axis and a number of hydrogen bonds has been observed throughtout the crystal lattice.

Each strand is made up of homodimeric units in which the sulfonamide molecules are connected to each other by intermolecular hydrogen bonds between the hydroxyl groups (O3—H3···O3) as well as the O—H··· π interaction with the aromatic ring. The dimer is, in turn, linked to the next dimer along the strand *via* non-conventional hydrogen bonds (C1—H1A···O2—S1 and C1—H1B···O2—S1). Finally, neighbouring strand of the same stereochemistry are connected to each other *via* conventional (N1—H1···O1—S1) and non-conventional (C1—H1A···O2—S1 and C1—H1B···O2—S1) hydrogen bonds (Fig. 2).

Non-conventional intramolecular hydrogen interactions (C4—H4···O1—S1 and C8—H8···O1—S1) are also observed with a distance of 2.55 and 2.61 Å between the hydrogen and the acceptor oxygen (Table 1).

Experimental

To a solution of 3-phenyl-2-tosyl-1,2-oxaziridine (551 mg, 2.00 mmol) in distilled THF (8 ml) was added under ambient atmosphere (*S*)-proline (69.1 mg, 0.600 mmol). After 5 minutes, phenylacetaldehyde (0.450 ml, 4.00 mmol) was added. After 1 h, sodium borohydride (151 mg, 4.00 mmol) was added to the mixture at 273 K and the mixture was stirred overnight. The mixture was then poured onto a biphasic mixture of HCl (1 mol l^{-1}) and EtOAc (1:1, 8 ml) at 273 K and vigorously stirred for 10 minutes. The organic phase was separated and the aqueous phase was extracted with EtOAc (8 ml *x* 4). The combined organic extracts were washed with brine, dried over MgSO₄ and concentrated *in vacuo* to afford a yellow oil. Purification by flash chromatography using hexane–EtOAc (2:1 to 1:1) as eluent yielded the title sulfonamide as a white solid (6%). Recrystallization of the title sulfonamide in hexane–CH₂Cl₂ (4:1) afforded colourless needles.

Refinement

Hydrogen atoms attached to carbon and nitrogen atoms were placed in calculated positions and refined using the riding model (N—H = 0.86 Å & C—H 0.93–0.97 Å), with $U_{iso}(H) = 1.2$ and $1.5U_{eq}$ (parent atom) for the nonmethyl and methyl groups, respectively. The hydroxyl H-atom was disordered over two sites involved in either O—H…O hydrogen bonding to a neighboring alcohol or O—H… π interactions with a neighboring phenyl ring. In the final refinement these two hydrogen atoms were included, fixed in these two positions. After the final refinement a peak of electron density of 1.05 e Å⁻³, distanced

0.82 Å from the sulfonamide oxygen O2, was observed. No evidence of disorder could be discerned. This peak was also present in an alternate refinement using data that had been corrected for absorption. This refinement was indistinguishable from structure presented here.

Figures

Fig. 1. The molecular structure and atom numbering scheme of the title compound with displacement ellipsoids drawn at the 50% probability level for non-H atoms.

Fig. 2. The unit cell packing of the title compound showing double strands of $(8S^*, 15S^*)$ and $(8R^*, 15R^*)$ enantiomers. A third strand of $(8S^*, 15S^*)$ sulfonamide (dimmed) which is positioned below the unit cell is also depicted in the figure to show the hydrogen bondings between the strands. Dashed lines represent hydrogen bonds; hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.

(±)-N-(3-hydroxy-1,2-diphenylpropyl)-4-methylbenzenesulfonamide

Crystal data

C ₂₂ H ₂₃ NO ₃ S	$D_{\rm x} = 1.358 {\rm ~Mg~m}^{-3}$
$M_r = 381.47$	Melting point: 426.7(8) K
Monoclinic, C2/c	Mo K α radiation $\lambda = 0.71073$ Å
<i>a</i> = 39.4702 (16) Å	Cell parameters from 6191 reflections
b = 5.4270 (2) Å	$\theta = 1.0-28.0^{\circ}$
c = 17.4287 (7) Å	$\mu = 0.20 \text{ mm}^{-1}$
$\beta = 91.028 \ (2)^{\circ}$	T = 90 (2) K
$V = 3732.7 (3) \text{ Å}^3$	Needle, colourless
Z = 8	$0.4 \times 0.16 \times 0.14 \text{ mm}$
$F_{000} = 1616$	

Data collection

Bruker SMART diffractometer with APEXII CCD detector	3763 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.042$
Monochromator: graphite	$\theta_{\text{max}} = 28.0^{\circ}$
T = 90(2) K	$\theta_{\min} = 1.0^{\circ}$
ω scans	$h = -51 \rightarrow 51$
Absorption correction: none	$k = -7 \longrightarrow 7$
22582 measured reflections	$l = -22 \rightarrow 22$
4478 independent reflections	

Refinement

Refinement on F^2

Secondary atom site location: difference Fourier map

Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.066$	H-atom parameters constrained
$wR(F^2) = 0.193$	$w = 1/[\sigma^2(F_o^2) + (0.0794P)^2 + 19.2449P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.13	$(\Delta/\sigma)_{\rm max} < 0.001$
4478 reflections	$\Delta \rho_{\text{max}} = 1.06 \text{ e } \text{\AA}^{-3}$
245 parameters	$\Delta \rho_{\rm min} = -0.63 \ e \ {\rm \AA}^{-3}$
15 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
S1	0.158723 (16)	0.06828 (12)	0.28375 (4)	0.01431 (19)	
01	0.14448 (5)	-0.1745 (4)	0.27404 (12)	0.0186 (4)	
O2	0.17401 (5)	0.1376 (4)	0.35572 (11)	0.0209 (5)	
O3	0.02222 (6)	0.6152 (6)	0.18428 (13)	0.0382 (7)	
H3A	0.0092	0.6156	0.2229	0.057*	0.50
H3B	0.0008	0.5906	0.1799	0.057*	0.50
N1	0.12844 (6)	0.2624 (4)	0.26835 (13)	0.0150 (5)	
H1	0.1283	0.3959	0.2949	0.018*	
C5	0.19060 (7)	0.1017 (5)	0.21504 (15)	0.0138 (5)	
C15	0.07339 (7)	0.4164 (5)	0.23044 (15)	0.0154 (5)	
H15	0.0843	0.5788	0.2313	0.019*	
C6	0.21262 (7)	0.3020 (5)	0.22046 (16)	0.0178 (6)	
Н6	0.2090	0.4253	0.2564	0.021*	
C21	0.06575 (7)	0.5353 (6)	0.36894 (17)	0.0185 (6)	
H21	0.0786	0.6753	0.3597	0.022*	
C2	0.24609 (7)	0.1333 (5)	0.11774 (16)	0.0170 (5)	
C16	0.05938 (6)	0.3698 (5)	0.30955 (15)	0.0150 (5)	
C10	0.10495 (7)	0.0475 (5)	0.07735 (16)	0.0182 (6)	
H10	0.0919	-0.0855	0.0928	0.022*	
C22	0.04555 (7)	0.4221 (6)	0.16845 (16)	0.0231 (6)	
H22A	0.0555	0.4487	0.1187	0.028*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H22B	0.0338	0.2653	0.1672	0.028*
C17	0.04036 (7)	0.1590 (5)	0.32496 (17)	0.0194 (6)
H17	0.0361	0.0451	0.2861	0.023*
C14	0.13191 (7)	0.4350 (5)	0.10406 (16)	0.0176 (6)
H14	0.1369	0.5635	0.1377	0.021*
C8	0.10096 (6)	0.2233 (5)	0.21110 (14)	0.0133 (5)
H8	0.0914	0.0591	0.2196	0.016*
C9	0.11285 (6)	0.2352 (5)	0.12954 (15)	0.0142 (5)
C13	0.14347 (7)	0.4453 (6)	0.02985 (17)	0.0200 (6)
H13	0.1563	0.5791	0.0141	0.024*
C3	0.22313 (8)	-0.0595 (6)	0.11139 (18)	0.0235 (6)
Н3	0.2263	-0.1793	0.0740	0.028*
C4	0.19557 (7)	-0.0777 (6)	0.15959 (18)	0.0213 (6)
H4	0.1806	-0.2092	0.1547	0.026*
C11	0.11646 (8)	0.0577 (6)	0.00254 (17)	0.0221 (6)
H11	0.1111	-0.0685	-0.0316	0.027*
C19	0.03415 (8)	0.2868 (6)	0.45638 (17)	0.0235 (6)
H19	0.0257	0.2601	0.5051	0.028*
C7	0.24002 (7)	0.3160 (6)	0.17183 (16)	0.0193 (6)
H7	0.2546	0.4502	0.1755	0.023*
C12	0.13588 (7)	0.2554 (6)	-0.02141 (16)	0.0205 (6)
H12	0.1438	0.2611	-0.0713	0.025*
C20	0.05321 (8)	0.4953 (6)	0.44183 (17)	0.0230 (6)
H20	0.0576	0.6085	0.4808	0.028*
C18	0.02775 (7)	0.1177 (6)	0.39810 (18)	0.0222 (6)
H18	0.0151	-0.0229	0.4078	0.027*
C1	0.27747 (7)	0.1382 (6)	0.06967 (18)	0.0231 (6)
H1A	0.2945	0.0338	0.0926	0.035*
H1B	0.2859	0.3039	0.0669	0.035*
H1C	0.2720	0.0801	0.0189	0.035*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0145 (3)	0.0139 (3)	0.0144 (3)	0.0006 (2)	-0.0002 (2)	0.0022 (2)
O1	0.0180 (9)	0.0144 (10)	0.0235 (10)	-0.0022 (8)	0.0015 (7)	0.0024 (8)
O2	0.0228 (10)	0.0240 (11)	0.0157 (10)	-0.0013 (8)	-0.0030 (7)	0.0036 (8)
O3	0.0277 (12)	0.0627 (18)	0.0240 (12)	0.0281 (13)	-0.0033 (9)	-0.0032 (12)
N1	0.0165 (11)	0.0146 (11)	0.0137 (10)	0.0022 (9)	-0.0020 (8)	-0.0027 (9)
C5	0.0145 (12)	0.0117 (12)	0.0152 (12)	0.0015 (10)	-0.0017 (9)	0.0012 (10)
C15	0.0172 (12)	0.0137 (13)	0.0154 (12)	0.0023 (10)	0.0018 (9)	0.0000 (10)
C6	0.0231 (13)	0.0142 (13)	0.0162 (12)	-0.0019 (11)	-0.0006 (10)	-0.0021 (10)
C21	0.0176 (13)	0.0172 (14)	0.0206 (14)	-0.0016 (11)	-0.0003 (10)	0.0011 (11)
C2	0.0156 (12)	0.0180 (14)	0.0174 (13)	0.0015 (10)	-0.0015 (9)	0.0038 (11)
C16	0.0131 (11)	0.0150 (13)	0.0169 (13)	0.0033 (10)	0.0014 (9)	0.0014 (10)
C10	0.0206 (13)	0.0148 (13)	0.0191 (13)	-0.0010 (11)	-0.0010 (10)	-0.0024 (11)
C22	0.0188 (13)	0.0355 (18)	0.0152 (13)	0.0079 (12)	0.0006 (10)	-0.0009 (12)
C17	0.0209 (13)	0.0151 (14)	0.0221 (14)	0.0009 (11)	0.0003 (10)	-0.0006 (11)

C14	0.0187 (13)	0.0177 (14)	0.0165 (13)	-0.0011 (11)	0.0005 (10)	-0.0034 (11)
C8	0.0151 (12)	0.0125 (12)	0.0123 (12)	0.0001 (10)	-0.0006 (9)	-0.0012 (10)
C9	0.0124 (11)	0.0144 (13)	0.0158 (12)	0.0021 (10)	-0.0009 (9)	-0.0016 (10)
C13	0.0189 (13)	0.0205 (14)	0.0206 (14)	-0.0010 (11)	0.0034 (10)	0.0003 (11)
C3	0.0268 (15)	0.0190 (15)	0.0251 (15)	-0.0022 (12)	0.0069 (12)	-0.0067 (12)
C4	0.0208 (14)	0.0169 (14)	0.0262 (15)	-0.0059 (11)	0.0034 (11)	-0.0064 (12)
C11	0.0285 (15)	0.0198 (15)	0.0180 (14)	0.0032 (12)	-0.0019 (11)	-0.0074 (11)
C19	0.0239 (14)	0.0286 (17)	0.0183 (13)	0.0051 (12)	0.0063 (11)	0.0065 (12)
C7	0.0195 (13)	0.0168 (14)	0.0213 (14)	-0.0057 (11)	-0.0016 (10)	0.0013 (11)
C12	0.0200 (13)	0.0288 (16)	0.0129 (12)	0.0047 (12)	0.0029 (10)	-0.0011 (11)
C20	0.0304 (16)	0.0231 (15)	0.0155 (13)	0.0014 (12)	0.0008 (11)	-0.0009 (12)
C18	0.0197 (14)	0.0179 (14)	0.0291 (15)	0.0008 (11)	0.0037 (11)	0.0065 (12)
C1	0.0191 (13)	0.0259 (16)	0.0245 (15)	0.0008 (12)	0.0032 (11)	0.0053 (13)

Geometric parameters (Å, °)

S1—O2	1.432 (2)	C22—H22A	0.9700
S1—O1	1.441 (2)	C22—H22B	0.9700
S1—N1	1.612 (2)	C17—C18	1.395 (4)
S1—C5	1.762 (3)	С17—Н17	0.9300
O3—C22	1.425 (4)	C14—C13	1.381 (4)
О3—НЗА	0.8541	C14—C9	1.397 (4)
O3—H3B	0.8579	C14—H14	0.9300
N1—C8	1.476 (3)	C8—C9	1.506 (3)
N1—H1	0.8600	С8—Н8	0.9800
C5—C4	1.389 (4)	C13—C12	1.393 (4)
С5—С6	1.394 (4)	С13—Н13	0.9300
C15—C16	1.516 (4)	C3—C4	1.390 (4)
C15—C22	1.528 (4)	С3—Н3	0.9300
C15—C8	1.552 (4)	C4—H4	0.9300
C15—H15	0.9800	C11—C12	1.387 (4)
C6—C7	1.388 (4)	C11—H11	0.9300
С6—Н6	0.9300	C19—C20	1.384 (5)
C21—C20	1.389 (4)	C19—C18	1.389 (5)
C21—C16	1.390 (4)	С19—Н19	0.9300
C21—H21	0.9300	С7—Н7	0.9300
C2—C3	1.387 (4)	C12—H12	0.9300
C2—C7	1.392 (4)	С20—Н20	0.9300
C2—C1	1.508 (4)	C18—H18	0.9300
C16—C17	1.397 (4)	C1—H1A	0.9600
C10-C11	1.389 (4)	C1—H1B	0.9600
С10—С9	1.397 (4)	C1—H1C	0.9600
C10—H10	0.9300		
O2—S1—O1	120.01 (13)	C13—C14—C9	121.2 (3)
O2—S1—N1	105.87 (13)	C13—C14—H14	119.4
O1—S1—N1	106.94 (12)	C9—C14—H14	119.4
O2—S1—C5	105.87 (12)	N1—C8—C9	113.2 (2)
O1—S1—C5	107.24 (12)	N1—C8—C15	105.4 (2)
N1—S1—C5	110.85 (12)	C9—C8—C15	114.1 (2)

С22—О3—НЗА	123.7	N1—C8—H8	108.0
С22—О3—НЗВ	120.5	С9—С8—Н8	108.0
НЗА—ОЗ—НЗВ	57.6	С15—С8—Н8	108.0
C8—N1—S1	123.52 (19)	C14—C9—C10	118.3 (3)
C8—N1—H1	118.2	C14—C9—C8	120.8 (2)
S1—N1—H1	118.2	C10—C9—C8	120.9 (2)
C4—C5—C6	119.9 (3)	C14—C13—C12	120.0 (3)
C4—C5—S1	120.8 (2)	С14—С13—Н13	120.0
C6—C5—S1	119.1 (2)	С12—С13—Н13	120.0
C16—C15—C22	112.2 (2)	C2—C3—C4	121.5 (3)
C16—C15—C8	110.7 (2)	С2—С3—Н3	119.2
C22—C15—C8	111.0 (2)	С4—С3—Н3	119.2
C16—C15—H15	107.6	C5—C4—C3	119.5 (3)
C22—C15—H15	107.6	С5—С4—Н4	120.2
C8—C15—H15	107.6	С3—С4—Н4	120.2
C7—C6—C5	119.6 (3)	C12—C11—C10	120.3 (3)
С7—С6—Н6	120.2	C12—C11—H11	119.8
С5—С6—Н6	120.2	C10—C11—H11	119.8
C20-C21-C16	121.2 (3)	C20—C19—C18	119.9 (3)
C20—C21—H21	119.4	С20—С19—Н19	120.1
C16—C21—H21	119.4	С18—С19—Н19	120.1
C3—C2—C7	118.1 (3)	C6—C7—C2	121.3 (3)
C3—C2—C1	120.7 (3)	С6—С7—Н7	119.3
C7—C2—C1	121.1 (3)	С2—С7—Н7	119.3
C21—C16—C17	118.5 (3)	C11—C12—C13	119.5 (3)
C21—C16—C15	120.4 (3)	C11—C12—H12	120.2
C17—C16—C15	121.2 (3)	C13—C12—H12	120.2
C11—C10—C9	120.6 (3)	C19—C20—C21	119.9 (3)
C11—C10—H10	119.7	С19—С20—Н20	120.0
С9—С10—Н10	119.7	C21—C20—H20	120.0
O3—C22—C15	109.7 (2)	C19—C18—C17	120.0 (3)
O3—C22—H22A	109.7	C19—C18—H18	120.0
C15—C22—H22A	109.7	C17—C18—H18	120.0
O3—C22—H22B	109.7	C2—C1—H1A	109.5
C15—C22—H22B	109.7	C2—C1—H1B	109.5
H22A—C22—H22B	108.2	H1A—C1—H1B	109.5
C18—C17—C16	120.6 (3)	C2—C1—H1C	109.5
C18—C17—H17	119.7	H1A—C1—H1C	109.5
С16—С17—Н17	119.7	H1B—C1—H1C	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1···O1 ⁱ	0.86	2.45	3.122 (3)	136
O3—H3A···O3 ⁱⁱ	0.85	2.06	2.910 (5)	179.7
C4—H4…O1	0.93	2.55	2.909 (4)	104
С8—Н8…О1	0.98	2.61	2.958 (3)	101
C1—H1A···O2 ⁱⁱⁱ	0.96	2.63	3.557 (4)	161

C1—H1B···O2 ^{iv}	0.96	2.74	3.552 (4)	142
O3—H3B···C16 ⁱⁱ	0.86	2.67	3.489 (4)	160.1
O3—H3B···C17 ⁱⁱ	0.86	2.85	3.499 (4)	133.7
Symmetry codes: (i) x, y+1, z; (ii) $-x$, y, $-z+1/2$; (iii) $-x+1/2$, $y-1/2$, $-z+1/2$; (iv) $-x+1/2$, $y+1/2$, $-z+1/2$.				

Fig. 2